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On the Use of the Present Document

This text is a compilation of articles previously published at www.scienceandresear

chdevelopmentinstitute.com/cosmoa.html constituting an unedited Part II of the e-

book ’Reaching for the Universe’ now available at the same URL. Minor print-

ing and similar errors in the original articles have been corrected and the argu-

ments underlying the theory have been strengthened. This document may be copied

electronically for scientific research purposes by individuals but printing on paper

and mass duplication are not allowed. Posting elsewhere on the Internet than at

www.scienceandresearchdevelopmentinstitute.com or at other public electronic net-

works are not allowed. Since this document constitutes an unedited version of Part II

of a book it lacks a few links. In particular, Table 6.1 (which belongs to Ch. 5 here) is

absent, but this corresponds rather closely to Table I found in the article ’Geometry

of the Universe and the Hydrogen Atom’ available at the same URL. Furthermore,

the numbering of the chapters in this document (because of Latex routines) is less by

6 units compared to the e-book, which may cause ambiguities in the reference list.

Anyone who has an opinion about the contents of this document is not likely to get

a better insight into the subject matter by reading the accompanying e-book. The

latter only presents 80 pages more of verbal arguments in favor of the theory.
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Chapter 1

The Geometry of Plain Observation

Summary

The space-time dimensionality of plain physical observation is investigated. A

local Euclidean reference frame, which forms the basis of physical observations, may

be defined by reference to some space-like separated frame, in which case a con-

strained validity of the closure axiom may be implied. For instance, the inverse of

the x1-component of the four-velocity may be Lorentz-transformed to a Euclidean

reference frame defined around t = 0 whose spatial extension is limited by c. In this

geometry, local observations of radial increments are made perpendicular to an an-

gular velocity in a space-like separated frame. The space-time dimensionality of this

system is further investigated. Interesting applications seem to be contracting three

dimensions on a cosmological scale to a single axis of observation, and the Bohr atom.

The knowledge-theoretical dilemma of distinguishing between

the perceived signal and the object itself was in the focus of the

academic debate in the late 18:th century but its implications for

modern physical descriptions have been taken lightly. For exam-
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ple, relativity theory is based on regarding the information carrier

light as an approaching object even though it is not. The invari-

ance principle in relativity theory leads to the well-known problems

of defining the spatial limitations of the universe, its ”closure” in

Euclidean space. Current standard cosmological models are based

on placing celestial objects in a 3-dimensional Cartesian coordinate

system subject to relativistic frame invariance. Is the real world

really an object looking like a Cartesian coordinate system? No.

Atoms, which are the most stable form of matter, are round and

electromagnetic radiation has three qualitatively distinct spatial

dimensions harboring magnetic and electric vectors and momen-

tum whereby the signal forms a wave front. These qualities are

not inherent in the Cartesian coordinate system. Why then should

the universe be an infinite object of right angles as required by the

invariance principle enforced at each point in a Cartesian coordi-

nate system? Obviously, there is no reason why it should be. In

fact, the geometry of the universe is not known. The following

is an attempt at finding a more natural geometry of the physical

world where the Cartesian coordinate system is secondary to the

qualities of the observers’ frames and the latter inherently yield

the empirically known geometry. For this purpose, the 200 year-
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old academic debate mentioned above is revived: Observations are

one-dimensionally directed towards the signal rather than towards

the physical object and the object itself is made space-like sepa-

rated from the observer’s frame.

Let two observers O and Ō located on the x-axis of a Carte-

sian coordinate system measure at time t the distance between

respectively origo and a point q near the circumference of a circle.

Let

q0 =

√
1− v2/c2

v

m2

s
; t0 = 0 , (1.1)

where m is the unit of distance, s is the unit of time (sec is the

SI-unit of time) and c = m/s is the velocity of light. The circle is

defined by analogy with the unit circle, (cos x)2 + (sin y)2 = 1, as

q0
2 +

1

c2

m4

s2 =
1

v2

m4

s2 (1.2)

Then perform a Lorentz transformation to the barred frame such

that the observer Ō measures

q̄0 =
1

v

m2

s
; t̄0 = −s (1.3)

Define the barred frame to be the laboratory frame and evaluate
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q and t at a time later by one unit in the barred frame, t̄r = 0;

qr =

√
1− v2/c2

v

m2

s
, tr = s

√√√√1− v2

c2 ; (1.4)

q̄r =
1

v

m2

s
− vs , t̄r = 0 . (1.5)

The sign of the interval, d2s = d2x − d2t as calculated on each of

the four coordinates, q0, t0; q̄0, t̄0; qr, tr; q̄r, t̄r ,

d2s0 =
c2m2

v2 −m2, d2s̄0 =
c2m2

v2 − s2 (1.6)

and

d2sr =
c2m2

v2 +
v2s2

c2 − s2 −m2, d2s̄r =
c2m2

v2 +
v2m2

c2 − 2m2 ,

(1.7)

shows that the observers are space-like separated for all velocities

v < c and units m = s whereas in classical relativity, space-like

separation follows when v > c.

The time interval

∆t̄ = t̄r − t̄0 = 1 (1.8)
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is an interval of observation located adjacent to zero (=present)

time, which is taken as the allowed coordinate from where an ob-

servation can be made. The lapse of one unit of time in the barred

frame is measured from origo as

∆t = tr − t0 = s

√√√√1− v2

c2 . (1.9)

The lapse of a unit of time produces a line increment in the barred

frame,

∆q̄ = −vs , (1.10)

while the radial distance as calculated from the frame at origo

remains the same as before,

∆q = 0 . (1.11)

The sign of the line increment shows that the radius of the

observed object decreases (cf. Eq. (1.5) and (1.10)). This corre-

sponds to the observer at origo computing a contracted radius q̄0

such that from Eq. (1.1) and (1.3), q0 = q̄0
√

1− v2/c2. Hence, the

geometry can be visualized as a circle space-like separated from a

peripheral observer who detects it in the form of a line increment

in the direction of observation (equivalent of a contraction of its
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radius) after the passage of one unit of time. In physics, line in-

crements in the direction of observation are known from the Bohr

atom and the cosmological expansion.

An important argument for abandoning the Bohr quantization

scheme in favor of the Schroedinger-Heisenberg schemes in the

first half of the 20:th century was that the rotation of the electron

around the nucleus not could be detected. No classical evidence

of rotation could be obtained and the counter-argument that sig-

naling from space-like separated events is forbidden was never pre-

sented in the debate at that time. One may infer that a similar

situation should apply if the present geometry were applied to the

cosmological expansion: No classical evidence of rotation may be

anticipated in that case.

To proceed with these applications, factorize the unit of dis-

tance, m, into momentum mass, M , expressed in units of ’s’ and

velocity;

m = Mv =
q̄0v

c
⇒ M =

q̄0

c
(1.12)

such that the classical definition of photon momentum, p = E/c,
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reads q̄0 = Ē/c and any point on the signal axis may have some

momentum relative to the expanding cosmological horizon. Let

the line increment, ∆q̄, and the time interval, ∆t̄, represent a

fluctuation around respectively q̄0 and zero (cf. Eq. (1.3) and (1.5

) ). Further, let the symbol h̄ substitute for Planck’s constant, h̄,

in the present geometry and formulate the uncertainty principle

relating to momentum, dx dp = h̄, as

(−vs) (m) ≈ h̄ . (1.13)

Then, a vacuum fluctuation is expressed as

∆Ē ∆t̄ = (−vm) s = h̄ . (1.14)

For observations towards origo along the full extension of the

radius, the magnitude of the line increment is amplified from ∆q̄

per unit radius to m (this may also be seen from Eq. (1.3) and

(1.10)),

−∆q̄

m
=

m

q̄0
, (1.15)

which yields the differential

q̄0 ∆q̄ = −m2 , (1.16)
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whereby the velocity of light, m/s, limits the radial extension of

the geometry to |q̄0|. A local observer may try and apply the Eu-

clidean closure axiom to the line increment, ∆q̄, and use it for

constructing a 3-dimensional space of infinite extension includ-

ing visible and space-like separated regions beyond the apparent

remote cosmological horizon. However, in the present case, the

extension of space is limited by v ≤ c as required by
√

1− v2/c2.

The limitation of the validity of the closure axiom is only evident

by reference to the space-like separated (invisible) frame at origo.

Because of Eq. (1.10) and (1.11), observations directly relying

on energy transfers on the momentum-signal axis can only be made

from the laboratory frame at the periphery towards the origin of

space and time coordinates. The observer at origo is non-local in

the sense of performing all observations solely on the time axis

(Eq. (1.9)). He is unable to define a spatial coordinate system

through observations, which would require repetitive use of some

line increment or a measuring rod. However, a relation between

∆t and ∆q̄ exists. From Eq. (1.9) and Eq. (1.10)

(
∆t

s
)2 + (

∆q̄

m
)2 = 1 , (1.17)
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such that by comparison with the unit circle, the non-local time is

perpendicular to the axis of observation in the barred frame. This

is different from classical relativity where time is measured with

reference to the velocities of the objects and light moving along the

x-axis and arbitrarily assigned a dimension in Hilbert space with

a metric and an observation may be performed from anywhere in

four-dimensional space-time.

In order to see if the non-locality of the frame at origo may have

any concrete consequences, consider the mathematical form of the

Sommerfeld equation describing the absorption-emission spectrum

of the Bohr hydrogen atom with relativistic corrections;

Enj = M0 c2

1 +
α2(

n− k +
√

k2 − α2
)2


−1/2

(1.18)

where Enj is the energy of the emitted radiation, M0 is the rest

mass of the electron, α = ve/c is the fine structure constant, ve

is the orbiting velocity of the electron, and n and k are quan-

tum numbers. Then make an observation towards origo; q̄0 =

q0/
√

1− v2/c2, and factorize in this expression from unity using
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1 = − q̄0∆q̄

m2 =
vsq0

m2
√

1− v2/c2
=

1

( )
√

1− v2/c2
, (1.19)

the empty bracket indicating a non-zero factor, to get

q̄0

ms
m2 =

q0

c

m2

s2

√√√√√√√√
11− v2/c2

( )(1− v2/c2)

 (1.20)

where v2/c2 is perpendicular to the axis of observation in the com-

plex plane as seen by rearranging Eq. 1.2 to a unit circle,

q̄2
0v

2

c2m2 +
v2

c2 = 1 , (1.21)

and the empty bracket harbors the torsional momentum quantum

numbers of Eq. (1.18). q0/c is equivalent of rest mass (cf. Eq.

(1.12)). The first two factors on the right side thus correspond

to those of Eq. (1.18). The term on the left side has dimension

frequency times distance squared whereby the relation ∆q̄ m = h̄

is evident by inserting Eq. (1.10) into Eq. (1.13). Then scale

down from cosmological size to the unit radius using Eq. (1.15)

and accordingly divide the left side by q̄2
0 to get an interval of ob-

servation, ∆q̄, corresponding to the signal on the left side of Eq.

(1.18). Further, scale down from m to h̄: The magnitude on the

left side is made smaller by a factor of q̄ −3
0 upon transforming
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from cosmological to atomic size. It may be concluded that Eq.

(1.18) and Eq. (1.20) are equivalent up to the quantum numbers

but distinguished by scaling of the magnitudes. Thus, if the sig-

nal axis is capable of transmitting information about the universe

then the primordial hydrogen atom is capable of appearing along

with it. The gravitational center of the universe is non-local in

the empirical sense that contributions from all directions cancel

at any point and the results therefore seem to indicate that this

non-locality is made manifest through the existence of (hydrogen)

atoms in a frame lacking spatial measures.

In contrast to the hydrogen atom for which exact experimental

data long have been established, the geometry of the universe is not

known. However the present non-standard approach to cosmology

may be evaluated using known numerical data for the apparent

expansion rate and other cosmological observables [1, 2, 3, 5, 6].

This is highly relevant in any discussion of the Euclidean closure

axiom applied to the physical world. Applying the geometry in

various pertinent contexts should hopefully yield numerical agree-

ment with the well-tested standard cosmological models.
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In principle, the expansion rate should be the inverse of the

radius of the universe (Eq. (1.15)), from where its matter density

may be obtained by conversion from geometrized units. In one

particular non-standard approach [1] , the energy produced by Λ0

decay tangential to the cosmological horizon is equated with the

line increment as described by

∆q̄length→energy =
EΛ0

2 c τ
2π ru , (1.22)

where EΛ0
is the energy of the particle, τ is its half life, and

ru = q̄0 is the radius of the universe, which yields ∆q̄ = 0.7668 ×

10−26 m/unit radius. In another approach, the geometry is ap-

plied to the Bohr atom with radius q̄0 using the scaling me ∝ ∆q

described under Eq. (1.20) whereupon the condition ∆q̄ m = h̄

yields (with e indicating the elementary charge)

∆q̄ =
√

h̄
π

2

2α

e c
× Ampere (1.23)

and the value ∆q̄ = 0.77145×10−26 m/unit radius. When further

applying Eq. (1.15) and integrating line increments per unit radius

until the herein described limitation of Euclidean space is reached,

the age of the visible universe appears to be 13.7×109 years (since

q̄0 = ru and (Σ∆q̄)/s < c), which agrees in the 3:rd digit with the
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value recently calculated by the Wilkinson Map Project [2, 3]. This

result and the fact that the expansion rates are within acceptable

limits of current estimations indicate that the present geometry is

capable of providing a workable approach to cosmology.

It is noteworthy that not only physical objects are accommo-

dated by this geometry. The signal transmission per se is also

represented. Electromagnetic radiation is known to be composed

of electric and magnetic vectors perpendicular to the signal prop-

agation (as in the frame O, which also is capable of representing

polarization and a non-local wave front) while the momentum ap-

pears in the direction of propagation (the frame Ō).

This report describes a geometry, which is closely tied to phys-

ical objects and observations. The objects, which are atoms, are

represented by a space-like separated frame having circular shape

and a rotational velocity whereas the observer perceives the signal

coming from the atoms in a one-dimensional frame of observa-

tion - the laboratory frame. The observation is made during a

short interval of time located around zero. This interval is related

to the classical quantum fluctuation described by the uncertainty
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principle. During the discrete observation of a signal, a radial con-

traction towards the remote is measured in the laboratory frame,

which is pertinent to the electron jumps taking place in the Bohr

atom. Since signaling from space-like separated objects not is al-

lowed, the geometry naturally explains why there is no classical

evidence of the electron’s rotation around the nucleus. Depending

on numerical calibration, the line increment towards the remote

may also be relevant to the cosmological expansion rate. The ge-

ometry yields a one-dimensional universe perceived in the direction

of observation towards the signal whereas the objects themselves

are space-like separated. If applied on the cosmological scale, the

atoms constitute evidence of the non-locality of the gravitational

center of the universe, because they appear in the same non-local

geometrical construct distinguished only by scaling of the magni-

tudes. The non-locality of the space-like separated frame at origo

can be shown from the fact that it lacks spatial measures in the di-

rection of observation. Measurements there are instead performed

on a time axis estranged from classical relativity a) because it is in-

herently perpendicular to the axis of observation rather than being

arbitrarily assigned a dimension in Hilbert space with a metric and

b) because observations only can be made from zero time and not
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from arbitrary time coordinates in four-dimensional space-time.

During the observation, a discontinuous Lorentz transformation

of this object is performed to the laboratory frame. As a result,

two or three spatial dimensions in the object (depending on po-

larization) become represented in a single spatial dimension in the

laboratory frame - the signal axis.
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Chapter 2

Factorization of the Planck Length in Terms of

a Line Increment of the Order of Hubble’s

Constant and Magnetic Charge

Summary

The Bohr atom is re-examined in terms of a new quantization of space-time in

which an observation only can be made around zero time, neglecting the progress of

measured time. The new space-time quantization can be applied to the ground state

of the Bohr atom, revealing that the Planck length may be regarded as the displace-

ment of charge within a line increment equivalent of Hubble’s expansion rate.

Planck’s constant has been known for a century to regulate en-

ergy transitions at the atomic and sub-atomic levels in its property

of representing an undivisible unit of energy. Since it is held as

one of the fundamental constants of nature few efforts have been

made to explore the reasons why it is so important and appears

in almost every phenomenon in modern physics from electromag-
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netic radiation and spin quantization to recent cosmology. The

fact that Planck’s constant can be expressed in terms of a unit

area has long been considered a clue to a deeper understanding of

its physics, which is also the approach pursued here. The Planck

length is solved from the ground state of the Bohr’s atom and

found to be partly constituted by a length increment of the order

of Hubble’s constant. Because of uncertainties about the correct

experimental value of Hubble’s constant such estimations have not

previously been possible. However, the present theory provides an

alternative way of estimating the value of Hubble’s constant based

on particle decay at the cosmological horizon [1] and the numer-

ical agreement with its derivation from the Bohr atom is within

experimental errors in the 2:nd digit.

An observation no longer than one unit of time around t = 0

is made by two space-like separated observers in two frames of

observation as described by

(q0, t0) =


√

1− v2/c2

v

m2

s
, 0

 ; (q̄0, t̄0) =

1

v

m2

s
, − s


(2.1)

and

20



(qr, tr) =


√

1− v2/c2

v

m2

s
, s

√√√√1− v2

c2

 ; (q̄r, t̄r) =

1

v

m2

s
− vs, 0

 ,

(2.2)

the latter equivalent of

(q̄r, t̄r) = (q̄0 + ∆q̄, 0) (2.3)

where

∆q̄ = −vs , (2.4)

m is the unit of distance, s is the unit of time, c = m/s = 1 is the

velocity of light, and ∆q̄ is the uncertainty of length [1, 4].

This equation system defines an observer at origo surrounded

by a rotational velocity, v, and a peripheral observer seeing radial

line increments, ∆q̄, in one dimension along the axis of observation.

The two observers are space-like separated. All measurements are

performed in the barred, peripheral frame where ∆q̄ is the recip-

rocal of q̄0,

q̄0∆q̄ ≈ −m2 , (2.5)
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∆q̄ is interpreted as the radius a0 in the Bohr theory while q̄0/c is

given the meaning of the electron’s rest mass Me [1, 5]. Namely,

the distance a0 fluctuates as seen in one dimension whereas Me is

the momentum mass. In the Bohr theory, the radius, a0 of the

first electron orbit in the ground state of the hydrogen atom is

a0 =
4πε0

e2

h̄2

Me
(2.6)

where ε0 is the permittivity of vacuum, e is the elementary charge,

and h̄ is Planck’s constant. Eq. 2.6 is rearranged and factorized

into

(a0 αMe)

 e2

4πε0α

 = h̄ h̄ (2.7)

where α is identified with the classical fine structure constant.

Here, each term has the magnitude in geometrical units of Planck’s

constant, which is equivalent of unity times the Planck length

squared. Since

αMe

h̄
=

1

a0
(2.8)

in the barred frame one is left with

e2

4πε0α
= h̄ . (2.9)
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The permittivity of vacuum is then expressed in terms of the

permeability of vacuum, µ0 using ε0 = (µ0c
2)−1 with µ0 = 4π ·

10−7H/m, (H = Henry = J/(Ampere)2) and the unit of J is ge-

ometrized. Thus, when inserting α/α into the left side of Eq. 2.9,

(µ0α)

e2c2

4α2

 =

4π · 10−7 J

m(Ampere)2 α

 e2c2

4α2

 (2.10)

where J = 0.8251·10−7m and the first bracketed term consequently

has the numerical value x = 7.5719 ·10−53. This term is then writ-

ten (xπ/4)(4/π) whereupon 4/π and (Ampere)−2 are transferred

to the right bracket above and xπ/4 is interpreted as equivalent of

∆q̄2, yielding from Eq. 2.7 and 2.10

(∆q̄)2

 e2c2

(Ampere)2α2π


SI

= h̄ (2.11)

wherein the bracketed term contains a quotient of two squared

velocities expressed in SI-units and

g0 =
ec

2α
(2.12)

is recognized as the quantum of magnetic charge. Thus, the Planck

length, mPlanck, can be expressed in terms of a line increment,

∆q̄/(unit radius) times the unit of magnetic charge,
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mPlanck =
∆q̄

m π

2g0

Ampere
(2.13)

where ∆q̄ = 0.77145 × 10−26. This value is within experimental

errors identical to Hubble’s constant as estimated from Λ0 decay

tangential to the cosmological horizon [1], 0.7668 × 10−26. The

physical interpretation of 2.13 is also evident. The Planck length

represents the Hubble displacement in one spatial dimension of

one unit of charge moving at the velocity of light in the ground

state. Due to the space-like separation of the two observers in

the present theory, phenomena of rotation evident to the observer

at origo, such as Bohr-orbiting electrons and possibly magnetic

monopoles, may not be observable from the peripheral frame.
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Chapter 3

Calculation of Cosmological Observables from

Constants of Nature

Summary

Hubble’s constant is calculated exclusively from the constants of nature, e, α, c,

and h̄, yielding the value 71.73 km/sec/Mparsec. Corroborative results can be ob-

tained from a quantum fluctuation scenario of the early universe. The theory also

yields the radius of the universe, 1.296×1026 m, its energy density, 1.72×10−9J/m3,

and age, 13.7× 109 years, and the energy density of CBR, 0.286× 109 eV/m3 .

A recently developed relativistic construct [1, 4] identifies two

space-like separated observers who measure respectively an orbital

velocity as seen from origo and line increments in the direction of

observation as seen from the periphery towards the center. The

peripheral observer performs direct measurements in one spatial

dimension whereas the observer at origo is non-local in the sense

of only being capable of measurements on the time axis. This
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construct naturally accommodates the Sommerfeld equation of ra-

diation from the hydrogenic atom as well as the Bohr atom in its

ground state. The theory also, for the first time, offers a framework

for determining cosmological parameters based on plain quantum

physical considerations independent of astrophysical observations.

In this application, observations are made towards the non-local

frame at origo and the numerical values derived from the Bohr

atom are related to the cosmological scale. This approach is con-

sistent with the fact that almost all information about the phys-

ical world and the universe has its origin either in signaling from

atoms or the Planck distribution. In contrast, previous theoretical

approaches to the subject solely rely on gravity and thermodynam-

ics and often involve extensive hypothesizing about the expansion

of the universe into a pre-formed space-time.

It is customary to evaluate Hubble’s constant by comparing

results of different types of measurement while relating to some

relevant theory. A recently reported method of determining Hub-

ble’s constant is based on equating the gravitation of the universe

as measured from the cosmological horizon with particle creation

at the horizon [1]. The cosmological horizon is defined as the lab-
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oratory frame, which is space-like separated from a frame at origo

at a radial distance equal to and no longer than as given by hav-

ing the most distant expansion rate equal to the velocity of light.

The generation of primordial matter is estimated from the decay of

the Λ0 particle in a non-standard quantum fluctuation scenario of

the early universe. This method of calculating Hubble’s constant

yields the value 0.7668×10−26s−1 [1] (The symbol s is used for the

geometrized unit of time to distinguish from SI units, sec). Cor-

roborative data can be obtained by factorizing the Planck length

in terms of the apparent expansion rate based on numerical data

obtained from the Bohr atom [5], yielding

H =
√

h̄
π

2

2α

e c
Ampere = 0.77145× 10−26s−1 (3.1)

where e is the elementary charge, α is the fine structure constant,

c = m/s is the velocity of light, and h̄ is Planck’s constant. This

value, corresponding to 71.37 km/sec/Mparsec agrees within ex-

perimental errors with that obtained from the particle decay and is

also within acceptable limits of current astronomical observations

[6]. In Eq. 3.1, two lengths (plain or geometrized) are related by

electromagnetic entities expressed in SI-units with magnitude
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e c

π α Ampere
= 48.376× 106 . (3.2)

The reported Lorentz construct allows the identification of a

radius the magnitude of which is numerically given by the inverse

of the line increment, q̄0 = −m2/∆q̄. Applying v ≤ c to the dis-

tant expansion rate identifies this as the radius of the universe,

1.296 × 1026 m with volume, Vu = 9.124 × 1078m3, and the av-

erage energy density, ρu, is directly obtained as 1.296 × 1026 ×

1.2105×1044/Vu = 1.72×10−9Joule/m3, which is exactly twice the

published value based on standard cosmology, 0.851× 10−9J/m3.

The age of our universe is defined by the time it takes for a

light signal to go from origo (the origin of space and time co-

ordinates) to the cosmological horizon (=the laboratory frame),

1/c ∆̄q = 13.7× 109years. Exactly the same numerical value has

been obtained based on standard cosmological models (cf. [2]).

Much attention has been given through the years to the cos-

mic background radiation at 2.7 degrees Kelvin. Since ∆q̄ << 1,

Rayleigh-Jeans’ law of energy density of radiation in a hot cavity,

U(ν) =
8 πν2

c3 kT , (3.3)
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where U is the energy density of radiation of frequency ν, k is

Boltzmann’s constant and T is absolute temperature, may be used

for the present purposes. This equation applies to a classical os-

cillator of average energy kT contained in a hollow enclosure. It

is composed of that energy times the number of degrees of free-

dom taken as equal to the number of possible standing waves in

the enclosure. (Literature on this equation is available in refs.

[7, 8, 9, 10])The frequency is set to ∆q̄/ms. Since this is inter-

preted as a global and unique vacuum instability in the present

theory there is no need to sum over frequencies. Furthermore,

h̄ = ∆q̄m corresponds to Planck’s constant in the present geom-

etry (cf. [1, 3, 4, 5]) and the mass is measured in units of ’s’ .

Having the relation ∆q̄/m = −m/q̄0 for the unit radius the source

of CBR is assigned to the non-local origo by replacing the fre-

quency s−1 for ∆q̄/ms. The non-local origo in the present theory

is equivalent of the cosmological horizon in standard cosmological

models. Eq. 3.3 may then be written as

U(∆q̄) = 8 π (
m

ms
)2 (

s3

m3 ) kT , (3.4)

which has units m2/(sm3) = 1/(ms) in the present geometry. This

is rather high when taken par unit volume as in Eq. 3.3. The CBR
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emerging from the remote pole of the universe does not impinge

on a unit volume but is rather distributed over the entire signal

frame, which is equal to q̄ in the present one-dimensional universe.

Hence, it is appropriate to divide Eq. 3.4 by q̄. Since electromag-

netic radiation like CBR requires Planck’s constant rather than

an apparent cosmological expansion rate the transformation be-

tween the two lengths ∆q̄ and h̄/m expressed by Eq. 3.3 is then

applied to Eq. 3.4. Using the SI-derived numerical value for the

Boltzmann’s factor kT with CBR at 2.725K, 3.108× 10−67 m,

UCBR = 8π
e c

α π Ampere
kT m−3 = 3.78× 10−58m−1s−1 (3.5)

= 0.286× 106eV/m3 ,

whereas the published standard cosmological model value of the

energy density of CBR is 0.2604 × 106eV/m3, corresponding to

3.45 × 10−58m−2 [11]. Thus, the CBR appears to be straight-

forwardly associated with Hubble’s constant on the basis of the

present cosmological model. The origin of the discrepancy be-

tween the experimental and calculated values (9 % of the latter)

is not known. The theory may be criticized for mixing a classical

time-like separated sphere (Eq. 3.3) and a three-dimensional vol-

ume with the yet poorly known geometrical object indicated by
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a space-like separated circle as in [4]. From a numerical point of

view the results seem to corroborate the validity of Eq. 3.2.

The present results show for the first time that plausible numer-

ical values of several cosmological observables can be calculated

directly from constants of nature. The use of fixed boundary con-

ditions for the observables within a well-defined quantum physical

framework circumvents any speculations about the history of the

universe including the problem of its closure in the ”Big Bang”

hypothesis. A numerically more confident determination of Hub-

ble’s constant and the CBR than in standard models is made pos-

sible while maintaining the notion of the latter’s distant origin.

All numerical values are within acceptable limits of contemporary

astrophysics. The somewhat higher value of the energy density

than in standard models might be necessary for nucleation of mat-

ter given that an early expansive phase is not in the focus of the

present theory. Also standard models must face the factually ob-

served matter deficiency.

It is remarkable that all previous world pictures in physics are

based on Newtonian or Einsteinian gravity even though the Som-
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merfeld and Bohr atoms have been known for more than 80 years

and offer a more direct access to the information emerging from

the real world. The numerical agreement between the macroscopic

world picture based on gravity and the microscopic one based on

the geometry of the hydrogen atom reported here suggests that

either one (or both) may be right.
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Chapter 4

Evidence of Resonance between the W-boson

and the Apparent Cosmological Expansion

Rate.

Summary

A mathematical and geometrical relationship between the energy expressed by

the line increment of the apparent cosmological expansion rate and the energy equiv-

alent of the resonance particles in weak interaction theory is presented. The data

allow determination of Hubble’s constant in terms of the W and Z mass difference

and distinguishes between particle spin and charge. The calculations also identify a

mass quantum recurring in the particle listings, 0.225GeV . Numerical errors within

1 % or less of results from calculations based on this theory applied to the Bohr atom

or Λ0 particle decay, may be achieved.

An accurate determination of the apparent cosmological expan-

sion rate (Hubble’s constant) is one of the most important tasks

in Astrophysics with strong implications for the manner of appli-
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cation of High Energy Physics in the early universe. The cur-

rent trend is to regard the expansion rate as a running constant

amenable to macroscopic observation only and variable through

the history of the universe, particularly in its earlier stages. An

alternative approach, however, is to regard the expansion rate as

constituting evidence of a vacuum instability of space in the direc-

tion of observation [3, 4, 5, 12, 14]. In the geometry thus chosen,

a peripheral observer receives signals from a space-like separated

and non-local frame at origo. Various resonances with matter and

energy components are expected in this approach. As an exam-

ple, the Bohr atom can be decomposed into factors comprising a

line element of the order of Hubble’s constant [5]. The Λ0 parti-

cle, a candidate for the generation of primordial matter indifferent

of Big-Bang scenarios, is also capable of resonance at the energy

characteristic of the apparent cosmological expansion rate [1]. In

the present report, the search for such resonances focuses on the

W- and Z-bosons, the carriers of the weak interaction.

The W- and Z-bosons are placed in a geometry comprising two

space-like separated frames wherein the laboratory frame is one-

dimensional in the direction of observation and the yonder frame is
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perpendicular to the axis of observation and described by a circle

(cf. [4, 12, 14]). The velocity of light, c, is c = m/s = 1 (the unit of

sec is reserved for time in SI) and the mass, M , is expressed in units

of ’s’. In accordance with the historical conceptual development

of the Standard Model (cf. [15]) the weak interaction is regarded

as a sum of a vector current and an axial current. Provided the

charge is attributed to the axial current and contained in the term

B it is then possible to write

MW = A H2 + B1 π H2 C (4.1)

and

MZ = A H2 + B2 π H2 C (4.2)

with

∆M(W−Z) = ∆B π H2 C (4.3)

where MW and MZ are the energy-masses of the W- (80.4 GeV)

and Z-boson (91.2 GeV, cf. [16]) respectively, and A, B, C, and H

are variables to be identified. These equations are written down

for the present purposes only, without any attempt to fit them

numerically to the Standard Model (cf. e.g. [16]). If the left sides
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can be expressed as a function of the variable H with A = 1, C = 1

and B a rational number, a/b, such that b = na with n an integer,

or with a model-justified choice of A or C, then resonance can, in

principle, be claimed.

The strategy of this investigation is to identify the apparent cos-

mological expansion rate per unit length with a line increment, H,

and to find out whether or not this leads to reasonable quantita-

tive results. In the present theory, line increments (or decrements)

in the direction of observation correspond numerically to a per-

pendicular velocity in the yonder frame (cf. [1, 4, 12]). Like in

the classical case when the tangential velocity transforms into a

centrifugal force, the squared velocity is of particular importance

here: The squared velocity is regarded as an operator on arbitrary

mass, M and separated into a neutral contribution (first term on

right sides of Eq. 4.1 and 4.2) and a contribution involving elec-

trical charge (second term on right sides of Eq. 4.1 and 4.2). A

charge of −1 (or +1) is ascribed to the lighter of the two parti-

cles in accordance with experimental data. The charge difference is

contributed by +2
3 and −1

3 units following Standard Model conven-

tions. Since fractions of charge not are observed in the laboratory
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frame, the present theory directs these factors to the yonder frame

from where they are squared into the laboratory frame. This gives

B1 = 1/9, B2 = 4/9 and ∆B = 1/3. By assigning the point charge

to the axial vector it may be thought of as arising through mag-

netic curl in the yonder frame and may be ascribed in its entirety

to any of the particles by a phase shift. The spin (+1), on the

other hand, is ascribed to the factor A and equal for the two par-

ticles, also in accordance with experimental data.

Eq. 4.3 is solved first: As determined from the Bohr atom,

the line increment is 0.77145 × 10−26 s−1 [5], corresponding to

M [s]v2 ≈ 45GeV , leaving a factor of C = 0.229 up to resonance,

which is identified with (sin θW )2 where θW is the electro-weak

mixing angle, defined through Eq. 4.1 - 4.3 as the coupling of

the weak interaction to a unit charge. This numerical value is

somewhat higher than the current statistical average (cf. [16]) but

rather close to the NuTeV value. Based on these presumptions,

resonance is established at ∆B = 1/3 and B1 = 1/9, the latter cor-

responding to 3.60GeV and rational fractions thereof, for example

1.8GeV and 0.9GeV . These numbers are searchable in the particle

listings [16]. Particle masses of less than B/2 may be discarded in
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the search, unless the particles are known to emerge in associated

production, whereas including a factor of B/2 is defendable by ref-

erence to any oscillatory process taking place on the unit circle or

characterized by a wavelength (e.g. a vacuum fluctuation). The

results of the search are listed below;

Leptons

τ−1 1777 MeV ≈ 1.8 GeV

Light Unflavored Mesons

π(1800) 1801 MeV = 1.8 GeV

Strange Mesons

K± 494 MeV ≈ 1.8/4 GeV = 450 MeV

Charmed Mesons

D± 1869 MeV ≈ 1.8 GeV

D(2010)± 2010 MeV ≈ (9/8) 1.8 GeV = 2025 MeV

D(2460)± 2460 MeV ≈ (11/8) 1.8 GeV = 2475 MeV

Charmed, Strange Mesons

Ds
± 1969 MeV = (35/32) 1.8 GeV = 1969 MeV

D ∗s
± 2112 MeV, (38/32) 1.8GeV = 2138 MeV

Ds1(2536)± 2535 MeV ≈ (45/32) 1.8 GeV = 2531 MeV

DsJ(2573)± 2574 MeV, (46/32) 1.8 GeV = 2589 MeV

Bottom Mesons

B± 5279 MeV ≈ (23/8) 1.8 GeV = 5175 MeV
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Bottom, Charmed Mesons

Bc
± 6.4 GeV ≈ (7/2) 1.8 GeV = 6.3 GeV

N Baryons

p+ 938 MeV ≈ (1/2) 1.8 GeV = 900 MeV

∆ Baryons not searched

Σ Baryons

Σ+ 1189 MeV ≈ (5/8) 1.8 GeV = 1125 MeV

Σ− 1197 MeV ≈ (5/8) 1.8 GeV = 1125 MeV

Ξ Baryon

Ξ− 1321 MeV ≈ (3/4) 1.8 GeV = 1350 MeV

Ω Baryons

Ω− 1672 MeV, (7/8) 1.8 GeV = 1575 MeV

Charmed Baryons

Λc
+ 2285 MeV, (5/4) 1.8 GeV = 2250 MeV

Λc(2593)+ 2594 MeV, (11/8 + 1/16) 1.8 GeV = 2588 MeV

Λc(2625)+ 2627 MeV - -

Σc(2455)+ 2454 MeV, (11/8) 1.8 GeV = 2475 MeV

Σc(2520)++ 2519 MeV, (11/8) 1.8 GeV = 2475 MeV

Ξc
+ 2466 MeV, (11/8) 1.8 GeV = 2475 MeV

Ξ′c
+ 2574 MeV, (11/8 + 1/16) 1.8 GeV = 2588 MeV

Ξc(2645)+ 2647 MeV, (3/2) 1.8 GeV = 2700 MeV

Ξc(2815)+ 2815 MeV, (3/2 + 1/16) 1.8 GeV =2813 MeV

(Ωc
0) (no charge) 2704 MeV ≈ (3/2) 1.8 GeV = 2700 MeV

Bottom Baryons

(Λb
0) (no charge) 5624 MeV ≈ (25/8) 1.8 GeV = 5625 MeV

Table I. List of predominantly charged particles whose masses are roughly whole

fractions of 1.8 GeV, (1.8 GeV/8)=225 MeV.
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It is well known that quantum-physical resonance not requires

numerical agreement to the digit but rather involves probabilistic

branching fractions. Nevertheless, a most striking outcome of the

search (with reservations for statistical incompleteness of the data

collection and a bias of the method of particle production) was that

among the light, unflavored mesons, only the π(1800) is listed with

decay modes predominantly involving negatively charged particles.

It is also noteworthy that the proton mass is close to 1.8/2 GeV,

suggesting that stable (detectable) particles are slightly off the res-

onance axis, probably contributing to their stability. The search

further suggests that the energy confined to mass may appear in

multiples of 1.8/8 GeV = 225 MeV with variations presumably

related to the internal environment of the individual particles. A

mass quantum number of a fraction of that, for example 1/16 or

1/32, can not be excluded. Within the present theoretical frame-

work and the scope of the investigation, these results highlight that

information about the apparent cosmological expansion rate only

comes to us through electromagnetic waves and solving Eq. 4.1 or

4.2 with resonance at A = 1.71 may be justifiable when referring

to charged particles only (Eq. 4.3). It should also be remembered

that the vector AH2 is designed to harbor the spin +1 of the res-
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onance particles which may contribute to that A 6= 1.

An alternative approach is to only solve Eq. 4.1 with A = 1,

B1 = 1/4 and C = 1, which yields resonance for the W-boson but

leaves the connection to the Z-boson as well as the rationale for

choosing that particular value of B open. It is also more difficult

to find support for this in the particle listings.

Some further justification for the theoretical construct in Eq.

4.1- 4.3 will now be presented. For this purpose, measurables and

calculables are assigned to the material or the space-like separated

frames, respectively, as defined in ref. [1] and [4]. The notation

’ ¯ ’ is used for measurable events or entities in the direction of ob-

servation, ’ ˜ ’ for any calculable phenomenon in the yonder frame,

and plain symbols for scalars. The rules characterizing a space-like

separated frame and its relationships to the laboratory frame are

not yet known and the well-established vector concept compris-

ing e.g. fields by reference to some dimensions in Hilbert space is

therefore avoided. Furthermore, connections between these clas-

sical approaches and the present one remain to be explored. A

preliminary analysis of the Bohr atom using this notation sug-
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gested, for example, that the equivalence of centrifugal force with

charge attraction could be written

Ẽ ẽ

ā0 ā0
=

M̄ ṽ ṽ

ā0
⇒ ē2

¯̄a0
=

M̄ v̄2

ā0
(4.4)

and that the quantized-orbit condition could be written

M̄ ṽ ā0 2π = ñ ¯̄h . (4.5)

Many entities in the yonder frame become manifest by squaring

their value. For example, the hidden orbital velocity of the elec-

tron in the Bohr atom appears via the centrifugal force, the charge

appears by interaction with another charge, and the expectation

value in the momentum frame of an electromagnetic wave is a func-

tion of the squared amplitude in the two perpendicular dimensions.

The scalar product of the electric and magnetic field vectors yield-

ing the direction of energy flux further suggests that qualitatively

different entities also may interact to produce a quantity measur-

able in the direction of observation in the laboratory frame. Thus,

the present theoretical approach reasonably agrees with contempo-

rary theoretical physics and the new notation may even add spice

to century-old textbooks by tracing where the events described by

the classical equations take place.
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In summary, the present report for the first time collects ev-

idence of resonance by short-lived elementary particles with the

apparent cosmological expansion rate and expresses Hubble’s con-

stant in terms of accelerator data,

H =

√√√√√3 |∆M(W−Z)|
π (sin θW )2 . (4.6)

The three particles, the Λ0 particle, the W-boson, and the elec-

tron of the Bohr atom, the latter being the most significant element

in the early (and contemporary) universe, all seem to be capable

of resonance with the apparent cosmological expansion rate. This

resonance takes place within a theoretical construct that is highly

plausible since it is compatible with the Sommerfeld atom (cf.

[1, 4, 12]) and, as shown here, with many of the known particle

masses. There are implications of these results for various cosmo-

logical models and for theories about the creation of primordial

(primary) matter. For example, it is now reasonable to think of

primordial matter arising by symmetry operations at rather low

energy levels and that the mass of the top quark not by coincidence
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converges close to a multiple of 45 GeV. The scattering of the uni-

verse’s mass into particles seems to be related to the existence of

a mass quantum in resonance with the apparent expansion rate.
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Chapter 5

Geometry of the Universe and the Ground

State of the Hydrogen Atom

Summary

The geometry of the universe is evaluated by reference to the structure of the

hydrogen atom. The latter is regarded as composed of two Lorentz frames, the local

momentum frame, which is radial, and a space-like separated, yonder frame, which

is perpendicular to the axis of observation. The unit of time forms the basis of all

measurements in the yonder frame and is also inherent to the mass (substituting for

kg), yielding G = c3. A simple mathematical tool that identifies the two frames is

applied to a rotation involving the universe and the radial line increment, which is

interpreted as the apparent cosmological expansion. This theoretical construct opens

a hitherto unexplored perspective on the geometry of the universe. For example,

relations can be found between its vacuum and matter energies and (in terms of un-

certainty relations) between the apparent expansion rate and the age of the universe.

Almost all observations of the outer world are connected either

to the geometry of the Bohr-Sommerfeld atoms (as, for example,
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all terrestrial objects) or to the Planck distribution (stellar ob-

jects). In contrast, our world picture is based on identifying the

gravitating objects with the sources of the signals and hypothesiz-

ing that the universe is expanding starting from a point in space

14 billion years ago. One then from the outset dismisses the Kan-

tian distinction between the object and the impression (signal),

the Borelian indeterminacy of an evolving 3-(or more) body sys-

tem, and in addition surmises that space-time existed before its

physical contents to the effect that the observer-measurer watches

our evolving universe from the outside. In this pre-existing space

every point is equivalent according to the strong equivalence prin-

ciple and there is no outer boundary. Furthermore, in classical

relativity theory there is no preferred rest frame for observations

even though all observations are made at present time, all are

directed towards the source of the signal, and the source of the

signal always shows an asymmetrical mass distribution relative

to the signal and the electron cloud where it ultimately settles,

as exemplified by the radiating atom. Under such circumstances,

exchanging the observer’s and the object’s positions while main-

taining equivalence seems difficult and one must conclude that any

observer has a privileged reference frame compared to the object
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(=source of the signal). A comparison of the world pictures de-

rived from classical relativity theory and the primordial hydrogen

atom with mass measured in units of ”s” (geometrized second) re-

veals that the latter is capable of accommodating several concepts

in modern physics (cf. [13]). However, the case for the hydrogen

atom when selecting a world picture does not only lean on various

concepts in modern physics but is also strengthened by a logical

argument: The first stable matter in the universe must have fitted

well into the universe’s space-time.

It is well known that the hydrogen atom, the prototype for all

atoms, is spherical or ellipsoidal in the Bohr-Sommerfeld models

and that its ground state is well described by a circular geometry.

The inverse of the number-flux vector in the x1 -direction, denoted

q,

q =

√
1− v2/c2

v

m2

s
, (5.1)

describes such a circular geometry seen from origo, tied by ordinary

Lorentz-transformations to an observer’s frame where [1, 4]

∆q ≡ −vs = −m2

q̄
(5.2)
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identifies a line increment along the axis of observation tied to the

lapse of one unit of time [4].

Consider the energy, J , going into radiation in the Sommerfeld

equation of the hydrogenic atom,

J(k, i) =
M0 c2√

1 + α2Z2

(i+
√

k2−α2Z2)2

−M0c
2 (5.3)

where k and i are quantum numbers, M0 is the rest mass of the

electron, c is the velocity of light, α is the fine structure constant

(= v/c in the ground state), and Z is the ionic charge. The energy

may be shifted (redefined) by the constant amount M0c
2 (adding

this term to the right side only), rearranging, and writing

J = M0 c2

√√√√√1− 1

M 2
0 c4

J2α2Z2

(i +
√

k2 − α2 Z2)2 (5.4)

where, in the ground state, 1/(M0c
2) ∝ −∆q and the last quotient

under the root sign is constant. Eq. 5.4 is analogous to Eq. 5.1

as far as signaling is concerned and equivalent to Eq. 5.1 for the

ground state but the latter is more general and easier to work with.

Actually, M0 is the rest mass at origo and not, as required, the

relative mass. The latter is of particular importance in the case

of excitations above the ground state. An alternative approach of
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identifying the signalling hydrogen atom with a circle is described

in [1, 4] and [12].

In this geometry the momentum (signal) frame is designated

by a bar, ,̄ over the symbol and the yonder (space-like separated)

frame by a tilde, ˜, with the following conversions between frame

dimensionality, D(a), of a variable a:

D(ãã) = D(ā2) = ¯ (5.5)

D(
1

ãã
) = D(

1

ā2
) = 1/̄ (5.6)

D(
√

ā) = D(
√̃

a) = ˜ (5.7)

D(
1√
ā
) = D(

1
√̃

a
) = 1/˜ (5.8)

D(
ā

b̃
) = D(

˜̃a
b̃
) = ˜ (5.9)

and

D(s2) = ˜ ˜ = D(m) = ¯ (5.10)
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The notations, unit dimensions, and frame-dimensionality of

respectively length (l), time (t), mass (M), momentum (p), energy

(E), energy density (ρ), force (F), and acceleration (a) are (with

velocity of light, c = m̄/s̃)

[l] = m → m̄; D(l) = ¯ (5.11)

[t] = s → s̃; D(t) = ˜ (5.12)

[M ] =
m

c
→ s̃; D(M) = ˜ (5.13)

[p] = m = M̃ṽ; D(p) = ¯ (5.14)

[E] = mc → m̄m̄

s̃
; D(E) = ¯ /̄ ˜ (5.15)

[ρ] = D(E)/m3; D(ρ) = 1/˜ ¯ = ˜/̄ ¯ (5.16)

[F ] = c → m̄

s̃
; D(F ) = /̄˜ = ˜ (5.17)

[a] =
m̄

s̃ s̃
; D(a) = /̄˜ ˜ = 0 (5.18)
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With these rules a gravitational interaction between two masses

in the barred frame (=momentum or laboratory frame) is made

explicit by writing M̃1M̃2 = M1M2 whereas a single mass, M̃

only appears in the yonder (space-like separated and perpendic-

ular) frame. Note also that measuring mass in seconds natu-

rally assigns it to origo (as in all atoms) where the measure-

ments solely are made in units of time (cf. [1, 4]). The numerical

value of the gravitational constant in classical geometrized units is

G/c2 = 7.425 × 10−28m/kg = 1. With mass measured in seconds

the relation between G and c becomes

G = c3; D(G) = D(F 3) =
¯ ¯ ¯

˜ ˜ ˜ =
¯¯

˜ ⇒ D(G) = D(E) . (5.19)

Let two equally heavy masses rotate around each other with

radius of orbit, r, and equate the centrifugal force with the gravi-

tational force considering Eq. 5.19,

Mv2

r
= G

M 2

r2 ⇒ v2

c2 =
x

r
(5.20)

whereby x is a length corresponding to mass M = x/c and

sv2

m
=

xc

r
⇒ s2v2 = m2x

r
(5.21)
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where the far left term is the unit centrifugal force: Depending on

the radius of rotation, r, the velocity v has associated with it the

lengths x and the masses, M ,

x(r=∆q) = − v3s3

m2 =
∆q

3

m2 ; M(r=∆q) =
∆q

3

m3 s (5.22)

x(r=m) =
v2s2

m
=

∆q
2

m
; M(r=m) =

∆q
2

m2 s (5.23)

x(r=q̄) = vs = ∆q ; M(r=q̄) =
∆q

m
s (5.24)

The classical gravitational force,

FG = GM1M2/r
2 , (5.25)

applied to the line increment, ∆q, and its inverse, the radius q̄, is

FG = c3 q̄

c

∆q

c

1

q̄2 = −c
∆q

2

m2 = −v2

c
. (5.26)

Since the frame dimensionality of force is D(F ) = /̄˜, which may

be contracted to D(F ) = ˜ ˜/˜ = ˜, it may be measured in both

frames and its yonder component is perpendicular to the axis of

observation in the laboratory frame.
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When the center of mass associated with q̄ rotates around the

line increment, ∆q, then the centrifugal force, Fa = Mv2/r, is

Fa =
q̄

c

v2

q̄
=

v2

c
. (5.27)

In such a case FG = −Fa leaves v as a free variable,

v2 = c2 ∆q
2

m2 , (5.28)

but when the line increment −∆q, circulates around q̄,

Fa = −∆q

c

v2

q̄
=

∆q

c

∆q

m2 v2 =
v4

c3 , (5.29)

FG = −Fa yields

v2 = c2 : (5.30)

Only the case when the heavier of ∆q < q̄ rotates allows velocities

v 6= 1. The observer must choose any of these locations and is not

allowed to go outside the object defined by the force between ∆q

and q̄ (provided there is only one universe).

When Eq. 5.26 = Eq. 5.27 is divided by ∆q
3
,

c (∆qm) m2

∆q
3 =

q̄2

s
=

q̄

m
q̄c =

q̄
c q̄c

s
, (5.31)
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which has the signature of energy, ¯ /̄ ˜. This may be rearranged

further using Eq. 5.2,

∆q m = − q̄

c

∆q
2

s
= − q̄

c
(
∆q

m
∆qc), (5.32)

which has the signature time× energy, ¯ ¯ = (˜) × (̄ /̄ ˜).

The present theory explores the geometry of a universe con-

forming to that of the ground state of the hydrogen atom in which

v ≤ c. Such a universe has age q̄/c and energy q̄c where q̄ is its

radius (cf. [3]). In this universe all measurements are done at zero

time in the observer’s frame and the relations between constants

of nature are likewise instantaneous. All observations of the signal

are tied to the observer’s epoch rather than the object. The space-

time inherently accommodates a line increment per unit length in

the direction of observation, ∆q, corresponding to a rotation in a

yonder, space-like separated Lorentz-frame, v, which is non-local

and involved in all observations. The line increment yields uncer-

tainty of magnitude ¯̄h = ∆qm, which may be rescaled to h̄ [3, 5].

A rotation of the smaller mass ∆q/c around q̄/c yields a con-

stant velocity v = c whereas a rotation of the heavy mass q̄/c
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around ∆q/c leaves v as a free variable. In the latter case, a

multiple (left side of Eq. 5.31) of the classical Casimir vacuum

energy 1,

EC =
c h̄ π2

720 a3 , (5.33)

associated with the line increment is equal to the universe’s squared

mass energy. Further, the constant ¯̄h may be expressed as the

squared line increment’s energy times the age of the universe (Eq.

5.32) by analogy to classical uncertainty relations.

This universe is static in the sense that it lacks time axis. The

local observer measures constants of nature and cosmological pa-

rameters in the present epoch and the theory provides no access

to measurements in other epochs. Such estimations are haunted

by the entropy and information content of the evolving >3-body

system, which are closely tied to its time axis, as well as lack of

knowledge about constants of nature including the very units of

space and time as seen by local observers in other epochs. Photon

entropy and mechanisms responsible for neutrino oscillations may

1relevant to, for example, conducting layers in an electron cloud of radius, r >> ∆q
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also be relevant for the geometry of a universe equipped with a

time axis but are not accounted for here.
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Chapter 6

The First Arbitrary Event

Summary

A new approach to the derivation of Planck’s equation of thermal radiation is

presented. Space-time is defined with reference to the zero time coordinates of two

Lorentz frames to indicate that observations are made around present time. The x-

coordinates at t = 0 and t̄ = 0 are identical to indicate invariance of the world being

observed and are defined as the inverse of the four-velocity. A Heisenberg-type uncer-

tainty relation is then applied to the length and time -increments of a quantization

from t̄ = −1 to t̄ = 0 to indicate signaling and observation. As a result, a geometry

is obtained where an arbitrary event that is bound to happen sooner or later with

exponentially decaying probability, is described by the same mathematical form as

that found in Planck’s equation and Bose-Einstein statistics.

Briefly, five or more different conceptual frameworks for deriv-

ing the energy density of thermal radiation as a function of the

frequency of emitted radiation may be found in the literature.

These are: Planck’s original one where the hot cavity radiation
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is quantized and its energy described by a classical oscillator [10],

Einstein’s use of the Bohr picture of the hydrogen atom in equilib-

rium with radiation [17], Bose’s statistical method of calculating

the most probable distribution of quanta [18], radiation in equilib-

rium with an assembly of molecules or an electron gas [19, 20], and

Hawking’s more recent method of studying the behavior of a wave

packet at retarded and advanced time coordinates at the horizon

of a black hole [21]. There are also other approaches to the sub-

ject, for example based on decoherence [22]. What is then, really,

thermal radiation, which can be described using such a variety of

faultless mathematical languages? Is thermal radiation different

things depending on the context or is there a common denomi-

nator for all these situations which has not yet been discovered?

The present paper tries to answer these questions in terms of the

geometry of the physical world.

The possibility that a particular geometry is relevant to Planck’s

equation as suggested by the thermal radiation at the event hori-

zon of a black hole (cf. [21]) is thus the subject of the present

paper. A useful geometry is obtained [1, 4] by taking the inverse

of the classical four velocity along the direction of movement as the
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x-coordinate, denoted q with unit m, q = ((
√

1− v2/c2)/v) (m2/s),

and time as the y-coordinate, t = 0, with geometrized unit s (to

distinguish from the SI-unit, sec) and Lorentz-transforming this

coordinate pair to another, barred frame where t̄ = −1s, having

the velocity of light c = m/s. A second Lorentz-transformation

is applied to coordinates where t̄ = 0 and x = q. Subsequently,

the coordinates are pairwise subtracted to yield a unit interval of

time in the barred frame, ∆t̄ = 1s thereby realizing a quantiza-

tion of space-time itself without any reference to observables or

time-dependent processes. Since the inverse of the four velocity

describes a circular geometry which accommodates the hydrogen

atom [1, 4, 5, 12] its physical interpretation is that of the ground

state of the hydrogen atom. In the pairwise subtracted coordi-

nates, ∆q = −m2/q̄ is taken as the uncertainty of location and ∆t̄

as an uncertainty of time. A formal uncertainty relation is applied

to these ∆-values whereby the momentum mass, M , is obtained

in units of s by factorizing the unit of distance, m = Mv, yielding

¯̄h ≈ −vm

c︸ ︷︷ ︸
∆x

c
m

c︸ ︷︷ ︸
∆p

; ¯̄h ≈ −vm

c
c︸ ︷︷ ︸

∆E

m

c︸︷︷︸
∆t

(6.1)

where v is the velocity distinguishing the two frames in the Lorentz

transformation, ¯̄h is the equivalent of Planck’s constant in the
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present geometry, x is distance along direction of observation, p

is momentum, E is energy, and t is time. In this equation the

uncertainty of location is equal to a line increment produced be-

tween the time coordinates t̄ = −1 and t̄ = 0 the numerical value

of which is given by (cf. [1, 4])

∆q = −vm

c
= −m2

q̄
(6.2)

and

¯̄h ≈ ∆q m (6.3)

Then q̄ can be solved from Eq. 6.1

q̄ ≈ −m3

¯̄h
, (6.4)

identifying after rearrangement a frequency, q̄/(ms),

¯̄h q̄

m3 =
¯̄h

m2

q̄

ms
s = −1 (6.5)

Subsequently, one waits for an arbitrary event to happen sooner

or later as described by equating with unity the probability of the

event integrated over time,
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∫ s−2

0
e−At d(t) = 1 ⇒ (6.6)

[e−At

−A

]t=(s−2)·s

t=0·s
= 1 (6.7)

The negative sign associated with the factor A is substituted using

Eq. 6.5;

exp
(
A

¯̄h q̄

m3 s

)
− 1 =

¯̄hq̄

m3 A (6.8)

and the unit volume in the denominator of the exponential factor

is substituted using the ideal gas law in the form

V =
R

n
T

n2

P
(6.9)

where n is the number of particles, R is the ideal gas constant, R/n

is Boltzmann’s constant, T is temperature, and P is pressure, such

that the exponential factor may be written

A
q̄ ¯̄h

ms

1

kT

c3 P s3

m2 n2 (6.10)

The exponential factor is further made dimensionless and adapted

to SI-units by choosing

A =
m2 n2

c3 P s3

kg

s
2π, (6.11)
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which is a constant when integrating over time. Since Planck’s

equation contains the constant h (Eq. (365) in [10]) whereas the

uncertainty relation contains h̄ = h/2π (Eqs. 2-21 and 8-25 in

[23]), a factor 2π has been added. Eq. 6.8 may now be written

with the energy of the radiation proportional to (cf. [1, 4]) the

frequency ν ≡ q̄/ms:

exp
((¯̄h)SI ν

k T

)
− 1 =

q̄

ms

n2

s2

(¯̄h)SI

P c3 = ν3 (¯̄h)SI

P c3 , (6.12)

where the pressure, P , has the same dimension as energy density,

U . Eq. 6.12 can be rearranged to

P =
ν3 (¯̄h)

c3

1

exp
(

(¯̄h)SI ν
k T

)
− 1

. (6.13)

Therefore, it is equivalent of Planck’s equation,

U(ν) =
8π hν3

c3

1

exp( hν
kT )− 1

(6.14)

where the factor 8π may be ascribed to the surface angle of a glow-

ing cavity times the number of polarization axes. The derivation

also allows scaling the numerical value of ¯̄h by including suitable

factors into the constant A, besides as here, 2π.
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The outlined derivation is based on regarding the frequency of

radiation as equivalent of the number of particles or nodes in a unit

volume and applying the ideal gas law to the latter. In the present

theory signaling takes place between the local frame of observation

and a non-local, space-like separated frame, which generates the

signal [1, 4]. In the case of the hydrogen atom the non-local frame

may be regarded as tied to the de-localized electron cloud sur-

rounding the nucleus which becomes local and detectable from the

outside during signaling and then generates radiation of frequency

(Eq. (4-34) in [24])

νk,i =
i ni − k nk

2
(6.15)

where i and k are quantum numbers and n is the orbital frequency

of the electron. Beginning with Bose’s papers in 1924 modern

derivations of Planck’s equation tend to dispose of a material phase

interacting with the radiation and the thermal distribution is ob-

tained merely from statistics. Nevertheless, in real situations the

radiation interacts with matter and the relation expressed by Eq.

6.15 suggests that this interaction may be substantial. Here, the

number of nodes in the frequency of the radiation may be given an

intuitive physical interpretation as the change of number of times
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the electron passes in a tangential direction the hemisphere in the

electron shell. For example, the cause of the polarization of radi-

ation may be ascribed to this interpretation. In contrast, classical

quantum mechanics emphasizes the radial wave of the hydrogenic

atom (Table 10-1 in [23]).

In order to identify material and radiation events in the general

case, one may rearrange Eq. 6.12 - 6.14 to a left side, yL and a

right side yR,

yL = U(ν)
1

n/s

1

n/s
(1− exp(−hν

kT
)), yR = hν exp(−hν

kT
) 8π

(6.16)

where yL = yR and n is the number of nodes (non-local in the

yonder, space-like separated frame and ordered along the axis of

observation in the momentum frame) and ν = n/s. The inverse of

the number of nodes may be interpreted as two distinct sites in a

random process (like the quark path in a lattice quark path picture,

or perhaps as the beginning and end of an open string in a quark-

string picture, or in the case of Eq. 6.15, a particular tangential

direction of the orbit out of n directions) and the left side, yL, may

be interpreted as the matter (confined) state. Then, irrespective of
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which approach is chosen, there is to the left a probability which is

proportional to the random and nonlocal process occurring twice,

1/n2, amplified by the energy density of the excitatory radiation,

U(ν), and proportional to the factor (1− exp(hν/(kT )). Since the

latter may be regarded as a probability factor complementary to

the factor exp(−hν/(kT )) with a statistical weight equal to unity

it represents the instability of the excited state in the physical

matter. Thus, all four terms to the left of Eq. 6.16 may unam-

biguously be interpreted as contributing to an enhanced probabil-

ity of a radiation-causing permissive event in the confined state -

physical matter. The right side of Eq. 6.16 contains the quan-

tum energy, hν, the exponential factor, exp(−hν/(kT )), which is

proportional to the probability of the excited state in the physical

matter amplifying the electromagnetic energy, and the factor 8π,

which may be ascribed to the surface angle of a cavity times the

number of polarization axes. All factors on the right side of Eq.

6.16 may thus unambiguously be interpreted as contributing to the

electromagnetic energy. Therefore, the probability of the radiative

events in the matter contained in yL is proportional to the elec-

tromagnetic energy factors of yR. The mathematical form of Eq.

6.16, where the probability of a permissive event is proportional
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to the probability of a consequential event has great conceptual

strength and is useful in interdisciplinary applications.

The present results for the first time show that a geometry

in which radiation is detectable on the momentum axis perpen-

dicular to a tangential velocity undergoing radial quantum jumps

naturally accommodates thermal radiation. In this geometry, ex-

emplified by the hydrogen atom, which is primordial in a cosmo-

logical sense, the first arbitrary event between t = 0 and t = 1s

is described by the same mathematical form as that found in the

Planck distribution. This result may help unify the great concep-

tual diversification in this field of research.
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