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Abstract. A local Euclidean reference frame, which forms the basis of physical
observations, may be defined by reference to some space-like separated frame, in
which case a constrained validity of the closure axiom may be implied. For instance,
the inverse of the x1-component of the four-velocity may be Lorentz-transformed to
an Euclidean reference frame defined around t = 0 whose spatial extension is limited
by c. In this geometry, local observations of radial increments are made perpendicular
to an angular velocity in a space-like separated frame. The space-time dimensionality
of this system is further investigated. Interesting applications seem to be contracting
three dimensions on a cosmological scale to a single axis of observation, and the Bohr
atom.

INTRODUCTION

The knowledge-theoretical dilemma of distinguishing between the perceived signal
and the object itself was in the focus of the academic debate in the late 18:th century
but its implications for modern physical descriptions have been taken lightly. For
example, all of relativity theory is based on regarding the information carrier light
as an approaching object even though it is not. The invariance principle in relativity
theory leads to the well-known problems of defining the spatial limitations of the
universe, its ”closure” in Euclidean space. Current standard cosmological models are
all based on placing celestial objects in a 3-dimensional Cartesian coordinate system
subject to relativistic frame invariance. Is the real world really an object looking
like a Cartesian coordinate system? No. Atoms, which are the most stable form
of matter, are round and electromagnetic radiation has three qualitatively distinct
spatial dimensions harboring magnetic and electric vectors and momentum whereby
the signal forms a wave front. These qualities are not inherent in the Cartesian
coordinate system. Why then should the universe be an infinite object of right
angles as required by the invariance principle enforced at each point in a Cartesian
coordinate system? Obviously, there is no reason why it should be. In fact, the
geometry of the universe is not known. The following is an attempt at finding a
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more natural geometry of the physical world where the Cartesian coordinate system
is secondary to the qualities of the observers’ frames and the latter inherently yield
the empirically known geometry. For this purpose, the 200 year-old academic debate
mentioned above is revived: Observations are one-dimensionally directed towards
the signal rather than towards the physical object and the object itself is made
space-like separated from the observer’s frame.

RESULTS

Let two observers O and Ō located on the x-axis of a Cartesian coordinate system
measure at time t the distance between respectively origo and a point q near the
circumference of a circle. Let

q0 =

√
1− v2/c2

v

m2

s
; t0 = 0 , (1)

where m is the unit of distance, s is the unit of time (sec is the SI-unit of time)
and c = m/s is the velocity of light. The circle is defined by analogy with the unit
circle, (cos x)2 + (sin y)2 = 1, as

q0
2 +

1

c2

m4

s2
=

1

v2

m4

s2
(2)

Then perform a Lorentz transformation to the barred frame such that the observer
Ō measures

q̄0 =
1

v

m2

s
; t̄0 = −s (3)

Define the barred frame to be the laboratory frame and evaluate q and t at a time
later by one unit in the barred frame, t̄r = 0;

qr =

√
1− v2/c2

v

m2

s
, tr = s

√
1− v2

c2
; (4)

q̄r =
1

v

m2

s
− vs , t̄r = 0 . (5)

The sign of the interval, d2s = d2x−d2t as calculated on each of the four coordinates,
q0, t0; q̄0, t̄0; qr, tr; q̄r, t̄r ,

d2s0 =
c2m2

v2
−m2, d2s̄0 =

c2m2

v2
− s2 (6)

and

d2sr =
c2m2

v2
+

v2s2

c2
− s2 −m2, d2s̄r =

c2m2

v2
+

v2m2

c2
− 2m2 , (7)

shows that the observers are space-like separated for all velocities v < c and units
m = s whereas in classical relativity, space-like separation follows when v > c.
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The time interval

∆t̄ = t̄r − t̄0 = 1 (8)

is an interval of observation located adjacent to zero (=present) time, which is taken
as the allowed coordinate from where an observation can be made. The lapse of one
unit of time in the barred frame is measured from origo as

∆t = tr − t0 = s

√
1− v2

c2
. (9)

The lapse of a unit of time produces a line increment in the barred frame,

∆q̄ = −vs , (10)

while the radial distance as calculated from the frame at origo remains the same as
before,

∆q = 0 . (11)

The sign of the line increment shows that the radius of the observed object decreases
(cf. eq. (5) and (10)). This corresponds to the observer at origo computing a

contracted radius q̄0 such that from eq. (1) and (3), q0 = q̄0

√
1− v2/c2. Hence,

the geometry can be visualized as a circle space-like separated from a peripheral
observer who detects it in the form of a line increment in the direction of observation
(equivalent of a contraction of its radius) after the passage of one unit of time. In
physics, line increments in the direction of observation are known from the Bohr
atom and the cosmological expansion.

An important argument for abandoning the Bohr quantization scheme in favor of
the Schroedinger-Heisenberg schemes in the first half of the 20:th century was that
the rotation of the electron around the nucleus not could be detected. No classical
evidence of rotation could be obtained and the counter-argument that signaling from
space-like separated events is forbidden was never presented in the debate at that
time. One may infer that a similar situation should apply if the present geometry
were applied to the cosmological expansion: No classical evidence of rotation may
be anticipated in that case.

To proceed with these applications, factorize the unit of distance, m, into mo-
mentum mass, M , expressed in units of ’s’ and velocity;

m = Mv =
q̄0v

c
⇒ M =

q̄0

c
(12)

such that the classical definition of photon momentum, p = E/c, reads q̄0 = Ē/c and
any point on the signal axis may have some momentum relative to the expanding
cosmological horizon. Let the line increment, ∆q̄, and the time interval, ∆t̄, repre-
sent a fluctuation around respectively q̄0 and zero (cf. eq. (3) and (5 ) ). Further,
let the symbol h̄ substitute for Planck’s constant, h̄, in the present geometry and
formulate the uncertainty principle relating to momentum, dx dp = h̄, as

3



(−vs) (m) ≈ h̄ . (13)

Then, a vacuum fluctuation is expressed as

∆Ē ∆t̄ = (−vm) s = h̄ . (14)

For observations towards origo along the full extension of the radius, the magni-
tude of the line increment is amplified from ∆q̄ per unit radius to m (this may also
be seen from eq. (3) and (10)),

−∆q̄

m
=

m

q̄0

, (15)

which yields the differential

q̄0 ∆q̄ = −m2 , (16)

whereby the velocity of light, m/s, limits the radial extension of the geometry to
|q̄0|. A local observer may try and apply the Euclidean closure axiom to the line
increment, ∆q̄, and use it for constructing a 3-dimensional space of infinite exten-
sion including visible and space-like separated regions beyond the apparent remote
cosmological horizon. However, in the present case, the extension of space is limited

by v ≤ c as required by
√

1− v2/c2. The limitation of the validity of the closure

axiom is only evident by reference to the space-like separated (invisible) frame at
origo.

Because of eq. (10) and (11), observations directly relying on energy transfers
on the momentum-signal axis can only be made from the laboratory frame at the
periphery towards the origin of space and time coordinates. The observer at origo
is non-local in the sense of performing all observations solely on the time axis (eq.
(9)). He is unable to define a spatial coordinate system through observations, which
would require repetitive use of some line increment or a measuring rod. However, a
relation between ∆t and ∆q̄ exists. From eq. (9) and eq. (10)

(
∆t

s
)2 + (

∆q̄

m
)2 = 1 , (17)

such that by comparison with the unit circle, the non-local time is perpendicular to
the axis of observation in the barred frame. This is different from classical relativity
where time is measured with reference to the velocities of the objects and light
moving along the x-axis and arbitrarily assigned a dimension in Hilbert space with
a metric and an observation may be performed from anywhere in four-dimensional
space-time.

In order to see if the non-locality of the frame at origo may have any concrete
consequences, consider the mathematical form of the Sommerfeld equation describ-
ing the absorption-emission spectrum of the Bohr hydrogen atom with relativistic
corrections;
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Enj = M0 c2

1 +
α2(

n− k +
√

k2 − α2
)2


−1/2

(18)

where Enj is the energy of the emitted radiation, M0 is the rest mass of the electron,
α = ve/c is the fine structure constant, ve is the orbiting velocity of the electron,
and n and k are quantum numbers. Then make an observation towards origo;

q̄0 = q0/
√

1− v2/c2, and factorize in this expression from unity using

1 = − q̄0∆q̄

m2
=

vsq0

m2
√

1− v2/c2
=

1

( )
√

1− v2/c2
. (19)

the empty bracket indicating a non-zero factor, to get

q̄0

ms
m2 =

q0

c

m2

s2

√√√√√√
1(

1− v2/c2

( )(1− v2/c2)

) . (20)

where v2/c2 is perpendicular to the axis of observation (cf. eq. (2)) in the complex
plane and the empty bracket harbors the torsional momentum quantum numbers
of eq. (18). q0/c is equivalent of rest mass (cf. Eq. (12)). The first two factors
on the right side thus correspond to those of eq. (18). The term on the left side
has dimension frequency times distance squared whereby the relation ∆q̄ m = h̄
is evident from eq. (10) and eq. (13). Then scale down from cosmological size
to the unit radius using eq. (15) and accordingly divide the left side by q̄2

0 to get
an interval of observation, ∆q̄, corresponding to the signal on the left side of eq.
(18): The magnitude on the left side is made smaller by a factor of q̄ −3

0 upon
transforming from cosmological to atomic size. It may be concluded that eq. (18)
and eq. (20) are equivalent up to the quantum numbers but distinguished by scaling
of the magnitudes. Thus, if the signal axis is capable of transmitting information
about the universe then the primordial hydrogen atom is capable of appearing along
with it. The gravitational center of the universe is non-local in the empirical sense
that contributions from all directions cancel at any point and the results therefore
seem to indicate that this non-locality is made manifest through the existence of
(hydrogen) atoms in a frame lacking spatial measures.

In contrast to the hydrogen atom for which exact experimental data long have
been established, the geometry of the universe is not known. However the present
non-standard approach to cosmology may be evaluated using known numerical data
for the apparent expansion rate and other cosmological observables. This is some-
what beyond the scope of an investigation of the plain geometry but is nevertheless
highly relevant in any discussion of the Euclidian closure axiom. Hopefully, applying
the geometry in various pertinent contexts will yield numerical correspondence with
standard cosmological models.

In principle, the expansion rate should be the inverse of the radius of the universe
(eq. (15)), from where its matter density may be obtained by conversion from
geometrized units. In one particular non-standard approach [1], the energy produced
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by Λ0 decay tangential to the cosmological horizon is equated with the line increment
as described by

∆q̄length→energy =
EΛ0

2 c τ
2π ru , (21)

where EΛ0 is the energy of the particle, τ is its half life, and ru = q̄0 is the radius
of the universe, which yields ∆q̄ = 0.7668 × 10−26 m/unit radius. In another
approach, the geometry is applied to the Bohr atom with radius q̄0 using the scaling
me ∝ ∆q described under eq. (20) whereupon the condition ∆q̄ m = h̄ yields (with
e indicating the elementary charge)

∆q̄ =
√

h̄
π

2

2α

e c
× Ampere (22)

and the value ∆q̄ = 0.77145×10−26 m/unit radius. When further applying eq. (15)
and integrating line increments per unit radius until the herein described limitation
of Euclidean space is reached, the age of the visible universe appears to be 13.7 ×
109 years, which agrees in the 3:rd digit with the value recently calculated by the
Wilkinson Map Project [2,3]. This result and the fact that the expansion rates are
within acceptable limits of current estimations indicate that the present geometry
is capable of providing a workable approach to cosmology.

It is noteworthy that not only physical objects are accommodated by this geome-
try. The signal transmission per se is also represented. Electromagnetic radiation is
known to be composed of electric and magnetic vectors perpendicular to the signal
propagation (as in the frame O, which also is capable of representing polarization
and a non-local wave front) while the momentum appears in the direction of prop-
agation (the frame Ō).

DISCUSSION

This report describes a geometry, which is closely tied to physical objects and ob-
servations. The objects, which are atoms, are represented by a space-like separated
frame having circular shape and a rotational velocity whereas the observer perceives
the signal coming from the atoms in a one-dimensional frame of observation - the
laboratory frame. The observation is made during a short interval of time located
around zero. This interval is related to the classical quantum fluctuation described
by the uncertainty principle. During the discrete observation of a signal, a radial con-
traction towards the remote is measured in the laboratory frame, which is pertinent
to the electron jumps taking place in the Bohr atom. Since signaling from space-
like separated objects not is allowed, the geometry naturally explains why there is
no classical evidence of the electron’s rotation around the nucleus. Depending on
numerical calibration, the line increment towards the remote may also be relevant
to the cosmological expansion rate. The geometry yields a one-dimensional universe
perceived in the direction of observation towards the signal whereas the objects
themselves are space-like separated. If applied on the cosmological scale, the atoms
constitute evidence of the non-locality of the gravitational center of the universe,
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because they appear in the same non-local geometrical construct distinguished only
by scaling of the magnitudes. The non-locality of the space-like separated frame at
origo can be shown from the fact that it lacks spatial measures in the direction of
observation. Measurements there are instead performed on a time axis estranged
from classical relativity a) because it is inherently perpendicular to the axis of ob-
servation rather than being arbitrarily assigned a dimension in Hilbert space with a
metric and b) because observations only can be made from zero time and not from
arbitrary time coordinates in four-dimensional space-time. During the observation,
a discontinuous Lorentz transformation of this object is performed to the laboratory
frame. As a result, two or three spatial dimensions in the object (depending on po-
larization) become represented in a single spatial dimension in the laboratory frame
- the signal axis.
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